The following information is used for educational purposes only.
Filmed February 2003 at TED2003
Rodney Brooks: Robots will invade our lives
In this prophetic talk from 2003, roboticist Rodney Brooks talks about how robots are going to work their way into our lives — starting with toys and moving into household chores ... and beyond.
Transcript:
What I want to tell you about today is how I see robots invading our lives at multiple levels, over multiple timescales. And when I look out in the future, I can't imagine a world, 500 years from now, where we don't have robots everywhere. Assuming — despite all the dire predictions from many people about our future — assuming we're still around, I can't imagine the world not being populated with robots. And then the question is, well, if they're going to be here in 500 years, are they going to be everywhere sooner than that? Are they going to be around in 50 years? Yeah, I think that's pretty likely — there's going to be lots of robots everywhere. And in fact I think that's going to be a lot sooner than that. I think we're sort of on the cusp of robots becoming common, and I think we're sort of around 1978 or 1980 in personal computer years, where the first few robots are starting to appear.
Computers sort of came around through games and toys. And you know, the first computer most people had in the house may have been a computer to play Pong, a little microprocessor embedded, and then other games that came after that. And we're starting to see that same sort of thing with robots: LEGO Mindstorms, Furbies — who here — did anyone here have a Furby? Yeah, there's 38 million of them sold worldwide. They are pretty common. And they're a little tiny robot, a simple robot with some sensors, a little bit of processing actuation.
On the right there is another robot doll, who you could get a couple of years ago. And just as in the early days, when there was a lot of sort of amateur interaction over computers, you can now get various hacking kits, how-to-hack books. And on the left there is a platform from Evolution Robotics, where you put a PC on, and you program this thing with a GUI to wander around your house and do various stuff. And then there's a higher price point sort of robot toys — the Sony Aibo. And on the right there, is one that the NEC developed, the PaPeRo, which I don't think they're going to release. But nevertheless, those sorts of things are out there.
And we've seen, over the last two or three years, lawn-mowing robots, Husqvarna on the bottom, Friendly Robotics on top there, an Israeli company. And then in the last 12 months or so we've started to see a bunch of home-cleaning robots appear. The top left one is a very nice home-cleaning robot from a company called Dyson, in the U.K. Except it was so expensive — 3,500 dollars — they didn't release it.
But at the bottom left, you see Electrolux, which is on sale. Another one from Karcher. At the bottom right is one that I built in my lab about 10 years ago, and we finally turned that into a product. And let me just show you that. We're going to give this away I think, Chris said, after the talk. This is a robot that you can go out and buy, and that will clean up your floor. And it starts off sort of just going around in ever-increasing circles. If it hits something — you people see that? Now it's doing wall-following, it's following around my feet to clean up around me. Let's see, let's — oh, who stole my Rice Krispies? They stole my Rice Krispies! (Laughter) Don't worry, relax, no, relax, it's a robot, it's smart! (Laughter) See, the three-year-old kids, they don't worry about it. It's grown-ups that get really upset. (Laughter) We'll just put some crap here. (Laughter) Okay. (Laughter) I don't know if you see — so, I put a bunch of Rice Krispies there, I put some pennies, let's just shoot it at that, see if it cleans up. Yeah, OK. So — we'll leave that for later. (Applause)
Part of the trick was building a better cleaning mechanism, actually; the intelligence on board was fairly simple. And that's true with a lot of robots. We've all, I think, become, sort of computational chauvinists, and think that computation is everything, but the mechanics still matter. Here's another robot, the PackBot, that we've been building for a bunch of years. It's a military surveillance robot, to go in ahead of troops — looking at caves, for instance. But we had to make it fairly robust, much more robust than the robots we build in our labs. (Laughter) On board that robot is a PC running Linux. It can withstand a 400G shock. The robot has local intelligence: it can flip itself over, can get itself into communication range, can go upstairs by itself, et cetera. Okay, so it's doing local navigation there. A soldier gives it a command to go upstairs, and it does. That was not a controlled descent. (Laughter) Now it's going to head off. And the big breakthrough for these robots, really, was September 11th. We had the robots down at the World Trade Center late that evening. Couldn't do a lot in the main rubble pile, things were just too — there was nothing left to do. But we did go into all the surrounding buildings that had been evacuated, and searched for possible survivors in the buildings that were too dangerous to go into. Let's run this video. Reporter: ...battlefield companions are helping to reduce the combat risks. Nick Robertson has that story. Rodney Brooks: Can we have another one of these? Okay, good. So, this is a corporal who had seen a robot two weeks previously. He's sending robots into caves, looking at what's going on. The robot's being totally autonomous. The worst thing that's happened in the cave so far was one of the robots fell down ten meters.
So one year ago, the US military didn't have these robots. Now they're on active duty in Afghanistan every day. And that's one of the reasons they say a robot invasion is happening. There's a sea change happening in how — where technology's going. Thanks. And over the next couple of months, we're going to be sending robots in production down producing oil wells to get that last few years of oil out of the ground. Very hostile environments, 150˚ C, 10,000 PSI. Autonomous robots going down, doing this sort of work. But robots like this, they're a little hard to program. How, in the future, are we going to program our robots and make them easier to use? And I want to actually use a robot here — a robot named Chris — stand up. Yeah. Okay. Come over here. Now notice, he thinks robots have to be a bit stiff. He sort of does that. But I'm going to — Chris Anderson: I'm just British. RB: Oh. (Laughter) (Applause) I'm going to show this robot a task. It's a very complex task. Now notice, he nodded there, he was giving me some indication he was understanding the flow of communication. And if I'd said something completely bizarre he would have looked askance at me, and regulated the conversation. So now I brought this up in front of him. I'd looked at his eyes, and I saw his eyes looked at this bottle top. And I'm doing this task here, and he's checking up. His eyes are going back and forth up to me, to see what I'm looking at — so we've got shared attention. And so I do this task, and he looks, and he looks to me to see what's happening next. And now I'll give him the bottle, and we'll see if he can do the task. Can you do that? (Laughter) Okay. He's pretty good. Yeah. Good, good, good. I didn't show you how to do that. Now see if you can put it back together. (Laughter) And he thinks a robot has to be really slow. Good robot, that's good.
So we saw a bunch of things there. We saw when we're interacting, we're trying to show someone how to do something, we direct their visual attention. The other thing communicates their internal state to us, whether he's understanding or not, regulates a social interaction. There was shared attention looking at the same sort of thing, and recognizing socially communicated reinforcement at the end. And we've been trying to put that into our lab robots because we think this is how you're going to want to interact with robots in the future. I just want to show you one technical diagram here. The most important thing for building a robot that you can interact with socially is its visual attention system. Because what it pays attention to is what it's seeing and interacting with, and what you're understanding what it's doing. So in the videos I'm about to show you, you're going to see a visual attention system on a robot which has — it looks for skin tone in HSV space, so it works across all human colorings. It looks for highly saturated colors, from toys. And it looks for things that move around. And it weights those together into an attention window, and it looks for the highest-scoring place — the stuff where the most interesting stuff is happening — and that is what its eyes then segue to. And it looks right at that. At the same time, some top-down sort of stuff: might decide that it's lonely and look for skin tone, or might decide that it's bored and look for a toy to play with. And so these weights change.
And over here on the right, this is what we call the Steven Spielberg memorial module. Did people see the movie "AI"? (Audience: Yes.)
RB: Yeah, it was really bad, but —
remember, especially when Haley Joel Osment, the little robot, looked at the blue fairy for 2,000 years without taking his eyes off it? Well, this gets rid of that, because this is a habituation Gaussian that gets negative, and more and more intense as it looks at one thing. And it gets bored, so it will then look away at something else. So, once you've got that — and here's a robot, here's Kismet, looking around for a toy. You can tell what it's looking at. You can estimate its gaze direction from those eyeballs covering its camera, and you can tell when it's actually seeing the toy. And it's got a little bit of an emotional response here. (Laughter) But it's still going to pay attention if something more significant comes into its field of view — such as Cynthia Breazeal, the builder of this robot, from the right. It sees her, pays attention to her. Kismet has an underlying, three-dimensional emotional space, a vector space, of where it is emotionally. And at different places in that space, it expresses — can we have the volume on here? Can you hear that now, out there? (Audience: Yeah.)
Kismet: Do you really think so? Do you really think so? Do you really think so?
RB: So it's expressing its emotion through its face and the prosody in its voice. And when I was dealing with my robot over here, Chris, the robot, was measuring the prosody in my voice, and so we have the robot measure prosody for four basic messages that mothers give their children pre-linguistically. Here we've got naive subjects praising the robot:
Voice: Nice robot. You're such a cute little robot. (Laughter) RB: And the robot's reacting appropriately.
Voice: ...very good, Kismet. (Laughter)
Voice: Look at my smile.
RB: It smiles. She imitates the smile. This happens a lot. These are naive subjects. Here we asked them to get the robot's attention and indicate when they have the robot's attention.
Voice: Hey, Kismet, ah, there it is.
RB: So she realizes she has the robot's attention. Voice: Kismet, do you like the toy? Oh.
RB: Now, here they're asked to prohibit the robot, and this first woman really pushes the robot into an emotional corner.
Voice: No. No. You're not to do that. No. (Laughter)
Not appropriate. No. No. (Laughter)
RB: I'm going to leave it at that.
We put that together. Then we put in turn taking. When we talk to someone, we talk. Then we sort of raise our eyebrows, move our eyes, give the other person the idea it's their turn to talk. And then they talk, and then we pass the baton back and forth between each other. So we put this in the robot. We got a bunch of naive subjects in, we didn't tell them anything about the robot, sat them down in front of the robot and said, talk to the robot. Now what they didn't know was, the robot wasn't understanding a word they said, and that the robot wasn't speaking English. It was just saying random English phonemes. And I want you to watch carefully, at the beginning of this, where this person, Ritchie, who happened to talk to the robot for 25 minutes — (Laughter) — says, "I want to show you something. I want to show you my watch." And he brings the watch center, into the robot's field of vision, points to it, gives it a motion cue, and the robot looks at the watch quite successfully. We don't know whether he understood or not that the robot — Notice the turn-taking. Ritchie: OK, I want to show you something. OK, this is a watch that my girlfriend gave me. Robot: Oh, cool. Ritchie: Yeah, look, it's got a little blue light in it too. I almost lost it this week. (Laughter) RB: So it's making eye contact with him, following his eyes. Ritchie: Can you do the same thing? Robot: Yeah, sure. RB: And they successfully have that sort of communication.
And here's another aspect of the sorts of things that Chris and I were doing. This is another robot, Cog. They first make eye contact, and then, when Christie looks over at this toy, the robot estimates her gaze direction and looks at the same thing that she's looking at. (Laughter) So we're going to see more and more of this sort of robot over the next few years in labs. But then the big questions, two big questions that people ask me are: if we make these robots more and more human-like, will we accept them, will we — will they need rights eventually? And the other question people ask me is, will they want to take over? (Laughter) And on the first — you know, this has been a very Hollywood theme with lots of movies. You probably recognize these characters here — where in each of these cases, the robots want more respect. Well, do you ever need to give robots respect? They're just machines, after all. But I think, you know, we have to accept that we are just machines. After all, that's certainly what modern molecular biology says about us. You don't see a description of how, you know, Molecule A, you know, comes up and docks with this other molecule. And it's moving forward, you know, propelled by various charges, and then the soul steps in and tweaks those molecules so that they connect. It's all mechanistic. We are mechanism. If we are machines, then in principle at least, we should be able to build machines out of other stuff, which are just as alive as we are. But I think for us to admit that, we have to give up on our special-ness, in a certain way. And we've had the retreat from special-ness under the barrage of science and technology many times over the last few hundred years, at least. 500 years ago we had to give up the idea that we are the center of the universe when the earth started to go around the sun; 150 years ago, with Darwin, we had to give up the idea we were different from animals. And to imagine — you know, it's always hard for us. Recently we've been battered with the idea that maybe we didn't even have our own creation event, here on earth, which people didn't like much. And then the human genome said, maybe we only have 35,000 genes. And that was really — people didn't like that, we've got more genes than that. We don't like to give up our special-ness, so, you know, having the idea that robots could really have emotions, or that robots could be living creatures — I think is going to be hard for us to accept. But we're going to come to accept it over the next 50 years or so.
And the second question is, will the machines want to take over? And here the standard scenario is that we create these things, they grow, we nurture them, they learn a lot from us, and then they start to decide that we're pretty boring, slow. They want to take over from us. And for those of you that have teenagers, you know what that's like. (Laughter) But Hollywood extends it to the robots. And the question is, you know, will someone accidentally build a robot that takes over from us? And that's sort of like this lone guy in the backyard, you know — "I accidentally built a 747." I don't think that's going to happen. And I don't think — (Laughter) — I don't think we're going to deliberately build robots that we're uncomfortable with. We'll — you know, they're not going to have a super bad robot. Before that has to come to be a mildly bad robot, and before that a not so bad robot. (Laughter) And we're just not going to let it go that way. (Laughter) So, I think I'm going to leave it at that: the robots are coming, we don't have too much to worry about, it's going to be a lot of fun, and I hope you all enjoy the journey over the next 50 years. (Applause)
Filmed February 2013 at TED2013
Rodney Brooks: Why we will rely on robots
Scaremongers play on the idea that robots will simply replace people on the job. In fact, they can become our essential collaborators, freeing us up to spend time on less mundane and mechanical challenges. Rodney Brooks points out how valuable this could be as the number of working-age adults drops and the number of retirees swells. He introduces us to Baxter, the robot with eyes that move and arms that react to touch, which could work alongside an aging population — and learn to help them at home, too.
Transcript:
Well, Arthur C. Clarke, a famous science fiction writer from the 1950s, said that, "We overestimate technology in the short term, and we underestimate it in the long term." And I think that's some of the fear that we see about jobs disappearing from artificial intelligence and robots. That we're overestimating the technology in the short term. But I am worried whether we're going to get the technology we need in the long term. Because the demographics are really going to leave us with lots of jobs that need doing and that we, our society, is going to have to be built on the shoulders of steel of robots in the future. So I'm scared we won't have enough robots. But fear of losing jobs to technology has been around for a long time. Back in 1957, there was a Spencer Tracy, Katharine Hepburn movie. So you know how it ended up, Spencer Tracy brought a computer, a mainframe computer of 1957, in to help the librarians. The librarians in the company would do things like answer for the executives, "What are the names of Santa's reindeer?" And they would look that up. And this mainframe computer was going to help them with that job. Well of course a mainframe computer in 1957 wasn't much use for that job. The librarians were afraid their jobs were going to disappear. But that's not what happened in fact. The number of jobs for librarians increased for a long time after 1957. It wasn't until the Internet came into play, the web came into play and search engines came into play that the need for librarians went down. And I think everyone from 1957 totally underestimated the level of technology we would all carry around in our hands and in our pockets today. And we can just ask: "What are the names of Santa's reindeer?" and be told instantly — or anything else we want to ask. By the way, the wages for librarians went up faster than the wages for other jobs in the U.S. over that same time period, because librarians became partners of computers. Computers became tools, and they got more tools that they could use and become more effective during that time. Same thing happened in offices. Back in the old days, people used spreadsheets. Spreadsheets were spread sheets of paper, and they calculated by hand. But here was an interesting thing that came along. With the revolution around 1980 of P.C.'s, the spreadsheet programs were tuned for office workers, not to replace office workers, but it respected office workers as being capable of being programmers. So office workers became programmers of spreadsheets. It increased their capabilities. They no longer had to do the mundane computations, but they could do something much more. Now today, we're starting to see robots in our lives. On the left there is the PackBot from iRobot. When soldiers came across roadside bombs in Iraq and Afghanistan, instead of putting on a bomb suit and going out and poking with a stick, as they used to do up until about 2002, they now send the robot out. So the robot takes over the dangerous jobs. On the right are some TUGs from a company called Aethon in Pittsburgh. These are in hundreds of hospitals across the U.S. And they take the dirty sheets down to the laundry. They take the dirty dishes back to the kitchen. They bring the medicines up from the pharmacy. And it frees up the nurses and the nurse's aides from doing that mundane work of just mechanically pushing stuff around to spend more time with patients. In fact, robots have become sort of ubiquitous in our lives in many ways. But I think when it comes to factory robots, people are sort of afraid, because factory robots are dangerous to be around. In order to program them, you have to understand six-dimensional vectors and quaternions. And ordinary people can't interact with them. And I think it's the sort of technology that's gone wrong. It's displaced the worker from the technology. And I think we really have to look at technologies that ordinary workers can interact with. And so I want to tell you today about Baxter, which we've been talking about. And Baxter, I see, as a way — a first wave of robot that ordinary people can interact with in an industrial setting. So Baxter is up here. This is Chris Harbert from Rethink Robotics. We've got a conveyor there. And if the lighting isn't too extreme — Ah, ah! There it is. It's picked up the object off the conveyor. It's going to come bring it over here and put it down. And then it'll go back, reach for another object. The interesting thing is Baxter has some basic common sense. By the way, what's going on with the eyes? The eyes are on the screen there. The eyes look ahead where the robot's going to move. So a person that's interacting with the robot understands where it's going to reach and isn't surprised by its motions. Here Chris took the object out of its hand, and Baxter didn't go and try to put it down; it went back and realized it had to get another one. It's got a little bit of basic common sense, goes and picks the objects. And Baxter's safe to interact with. You wouldn't want to do this with a current industrial robot. But with Baxter it doesn't hurt. It feels the force, understands that Chris is there and doesn't push through him and hurt him. But I think the most interesting thing about Baxter is the user interface. And so Chris is going to come and grab the other arm now. And when he grabs an arm, it goes into zero-force gravity-compensated mode and graphics come up on the screen. You can see some icons on the left of the screen there for what was about its right arm. He's going to put something in its hand, he's going to bring it over here, press a button and let go of that thing in the hand. And the robot figures out, ah, he must mean I want to put stuff down. It puts a little icon there. He comes over here, and he gets the fingers to grasp together, and the robot infers, ah, you want an object for me to pick up. That puts the green icon there. He's going to map out an area of where the robot should pick up the object from. It just moves it around, and the robot figures out that was an area search. He didn't have to select that from a menu. And now he's going to go off and train the visual appearance of that object while we continue talking. So as we continue here, I want to tell you about what this is like in factories. These robots we're shipping every day. They go to factories around the country. This is Mildred. Mildred's a factory worker in Connecticut. She's worked on the line for over 20 years. One hour after she saw her first industrial robot, she had programmed it to do some tasks in the factory. She decided she really liked robots. And it was doing the simple repetitive tasks that she had had to do beforehand. Now she's got the robot doing it. When we first went out to talk to people in factories about how we could get robots to interact with them better, one of the questions we asked them was, "Do you want your children to work in a factory?" The universal answer was "No, I want a better job than that for my children." And as a result of that, Mildred is very typical of today's factory workers in the U.S. They're older, and they're getting older and older. There aren't many young people coming into factory work. And as their tasks become more onerous on them, we need to give them tools that they can collaborate with, so that they can be part of the solution, so that they can continue to work and we can continue to produce in the U.S. And so our vision is that Mildred who's the line worker becomes Mildred the robot trainer. She lifts her game, like the office workers of the 1980s lifted their game of what they could do. We're not giving them tools that they have to go and study for years and years in order to use. They're tools that they can just learn how to operate in a few minutes. There's two great forces that are both volitional but inevitable. That's climate change and demographics. Demographics is really going to change our world. This is the percentage of adults who are working age. And it's gone down slightly over the last 40 years. But over the next 40 years, it's going to change dramatically, even in China. The percentage of adults who are working age drops dramatically. And turned up the other way, the people who are retirement age goes up very, very fast, as the baby boomers get to retirement age. That means there will be more people with fewer social security dollars competing for services. But more than that, as we get older we get more frail and we can't do all the tasks we used to do. If we look at the statistics on the ages of caregivers, before our eyes those caregivers are getting older and older. That's happening statistically right now. And as the number of people who are older, above retirement age and getting older, as they increase, there will be less people to take care of them. And I think we're really going to have to have robots to help us. And I don't mean robots in terms of companions. I mean robots doing the things that we normally do for ourselves but get harder as we get older. Getting the groceries in from the car, up the stairs, into the kitchen. Or even, as we get very much older, driving our cars to go visit people. And I think robotics gives people a chance to have dignity as they get older by having control of the robotic solution. So they don't have to rely on people that are getting scarcer to help them. And so I really think that we're going to be spending more time with robots like Baxter and working with robots like Baxter in our daily lives. And that we will — Here, Baxter, it's good. And that we will all come to rely on robots over the next 40 years as part of our everyday lives. Thanks very much. (Applause)
Subscribe to:
Post Comments (Atom)
La vejez. Drama y tarea, pero también una oportunidad, por Santiago Kovadloff
The following information is used for educational purposes only. La vejez. Drama y tarea, pero también una oportunidad Los años permiten r...
-
The following information is used for educational purposes only. 7 Self-Care Rituals That Will Make You a Happier and Healthier Perso...
-
The following information is used for educational purposes only. Transcript: ...
-
The following information is used for educational purposes only. La vejez. Drama y tarea, pero también una oportunidad Los años permiten r...
No comments:
Post a Comment
All comments are welcomed as far as they are constructive and polite.